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We use a field theoretic renormalization group method to study the critical 
properties of a diffusive system with a single conserved density subject to a con- 
stant uniform external field. A fixed point stable below dc= 5 is found to govern 
the critical behavior. Scaling forms of density correlation functions are derived 
and critical exponents are obtained to all orders in e = 5 - d. Spatial correlations 
are found to be very anisotropic with elongated correlations along the external 
field. Long wavelength transverse fluctuations are suppressed completely to 
yield mean field transverse exponents. 
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1. INTRODUCTION 

Systems in nonequilibrium steady states subject to an external driving force 
have attracted some recent interest. ~1-5) Results of computer simulations ~1) 
of stochastic lattice-gas models in two and three dimensions suggest that 
there exists a phase transition from a disordered phase to an ordered one, 
where the ordering is very anisotropic with striplike configurations parallel 
to the external field. A theoretical study ~2) of a slightly different version of 
the discrete model in the limit of infinite ratio of jump rates shows phase 
transitions of mean-field character. 

Recently van Beijeren e t  al., ~3) using a mode-coupling approximation, 
and Janssen and Schmittmann, ~4) using field theoretic techniques, con- 
sidered the continuum version of these driven diffusive systems. They 
studied the long-time behavior of density fluctuations above the critical 

t Department of Physics, University of California, Santa Barbara, California 93106 

567 

0022q715/86/0800-0567$05.00/0 �9 1986 Plenum Publishing Corporation 



568 Leung and Cardy 

point. Anomalous diffusive behavior was found for d<~ 2. Also Gawedzki 
and Kupiainen (5) studied these dynamical systems under external fields of 
different symmetries using a supersymmetric formulation, Their results 
show a crossover to critical behavior with upper critical dimension do = 5 
(or 3 for different symmetry of the external field). However, these authors 
have not analyzed the critical properties, which is the main purpose of the 
present work. 

We formulate the problem in a field theoretic renormalization group 
(RG) approach as in Janssen and Schmittmann. Only the longitudinal dif- 
fusion coefficient is found to get renormalized by the fluctuations. This 
coefficient will then vanish at a lower temperature than that of the trans- 
verse diffusion coefficient. The system consequently exhibits critical 
behavior governed by a fixed point with dc = 5. Very surprisingly most of 
the ultraviolet divergences are absent there, enabling us to determine 
critical exponents to all orders in e = 5 - d .  The results suggest strong 
spatial anisotropy, with elongated correlations along the direction of the 
driving force. 

The exponents describing the transverse correlations are found to be 
mean-field valued, reflecting the suppression and distortion of the long 
wavelength transverse fluctuations by the driving force, similar to the case 
of fluids under shear flow. (6) The form of the scaling relations between 
exponents is modified by extra terms which vanish in the absence of 
anisotropy. It is also necessary to introduce a new exponent to express the 
possible breakdown of the fluctuation-dissipation theorem (FDT). (7) 
However, this exponent turns out to be zero at the above-mentioned fixed 
point, indicating that the FDT is satisfied by the most singular parts of the 
functions involved. 

We also obtain another fixed point with d c = 4.5 in a different region 
of the parameter space. For completeness we also list the corresponding 
results to order one-loop. 

This paper is organized as follows: In Sec. 2 we outline the dynamical 
formulation of the field theory of driven diffusive systems with a single con- 
served density. We present in Sec. 3 the one-loop calculations of various 
renormalization constants in different regions of the parameter space. Sec- 
tion 4 then discusses the scaling forms of the density correlation functions 
and defines a complete set of critical exponents to describe the critical 
behavior. Scaling relations and exponents are presented. We summarize 
and make some remarks on detailed balance symmetry in Sec. 5. Finally 
the appendices contain evaluations of one-loop integrals and a calculation 
of the crossover exponent from the E =  0 fixed point to the E r  fixed 
point. Also the absence of certain ultraviolet divergences is discussed and a 
calculation of the exponent/~ is presented. 
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2. F IELD T H E O R E T I C  F O R M U L A T I O N  

Let us consider a diffusive system under a constant uniform external 
driving force which maintains the system in a nonequilibrium steady state. 
In a continuum model, the particle density c(x, t) at position x and time t 
obeys the equation of motion (3~ 

~ c ( x ,  t ) + V - j ( x ,  t ) = 0  (2.1a) 

j ( x ,  t )  = - D(c(x, t)) Vc(x, t) + c(x, t) u(c(x, t)) +jr(x, t) (2.1b) 

where j(x, t) is the particle current, D(c) the diffusion coefficient, u(c) the 
velocity field which accounts for the action of the driving force, and Jr a 
Gaussian white noise contribution which is supposed to summarize the 
effects of microscopic degrees of freedom. 

In the language of Ising magnets, the magnetization qg(x, t) 
corresponds to c(x, t) - g, where ? is the uniform average particle density. 
In the absence of an external magnetic field, (p(x, t) satisfies the kinetic 
equation ~4) 

0 1 
0t cp(x, t) = ~ 2E ~ll ~~ x, t) 

+ 2[rll 0~1 + r• - p 01 - 01~ V~_ 

-q(V~_) 23 r t ) +  f(x, t) (2.2a) 

( f(x,  t) f(x', t ' ) )  = - 2 2 ( a O ~ + V Z ) 6 ( x - x ' ) 6 ( t - t  ') (2.2b) 

This is obtained from (2.1) (cf. Refs. 3 and4):  The first term comes from 
expanding cu(c) to order (cO 2 and performing a suitable Galilean transfor- 
mation, the second term is the diffusion current, and if(x0 t ) =  - V ' j c ( x ,  t). 
2 is the transport coefficient; rll and r i  are the reduced temperature 
variables of the form T - T l l  and T - T l  respectively; and p, r/, and a are 
parameters taken to be independent of temperature. They take care of 
anisotropies which the external field E induces in the diffusion coefficient 
and the noise correlations. 

Equation (2.2) is the most general one for this system, being consistent 
with the following symmetries associated with the reversal of the direction 
of the external field~): 

(i) "Particle-hole" symmetry: E ~ - E  
q~ --. - %  

(ii) Spatial reflection symmetry: E ~ - E  

Xll ~ --Xll. 

822/44/3-zit- 19 



570 Leung and Cardy 

Other terms are expected to be irrelevant in the sense of renormalization 
group. When E = 0 ,  the nonlinear term oct0 3 becomes relevant and the 
anisotropies are removed, so we get back to the model B of Hohenberg and 
Halperin. (8) When E v a 0, the critical behavior corresponds to the vanishing 
of either r, or r• or both. 

A renormalized field theory (9) is set up by rewriting the equation of 
motion into a Martin-Siggia-Rose (MSR) action (1~ 

A[q), Cp] = j dax dt 2<~{ [ ~ - -  1(~ __ F]! 0~ - -  rA_V 2 

"~p0~- ] -  2 2 ~ V .  + q(v])  2 ] q~ 

+ (ad~ +V~)  ~3- �89 0H ~o 2 } (2.3) 

where q3(x, t) is a MSR response field. (~3) Correlation and response 
functions (to an external magnetic field) are then path integral averages 
with weight e -A. In (2.3) we have already chosen the scales of ~0 and ~ so 
that the coefficient of qS~b is one, and those of 0 ~  V 2 ~o and ~bV 2 ~ are iden- 
tical. It is important to realize that rll and r• can vanish at different tem- 
peratures, and therefore we must explore different regions in the parameter 
space. As explained in Sec. 3, these have different power countings leading 
to different upper critical dimensions. Thus the RG flows can be quite com- 
plicated. 

3. R E N O R M A L I Z A T I O N - - O N E - L O O P  CALCULATION 

We now describe a renormalization group analysis based on the action 
(2.3). (14'~5) The ultraviolet divergences of the one-particle irreducible vertex 
functions FX~u with ~- 0-legs and N q~-legs are absorbed multiplicatively in 
redefinitions of the parameters and fields in the action. 

It should be emphasized that the vertex functions F ~  and F ~ ,  
related linearly to the correlation function G and response function X 
respectively, have to be renormalized separately due to the possible absence 
of the fluctuation-dissipation theorem in the presence of a driving force. 
However, we observe that the singular parts of G and )~ do satisfy the usual 
form of FDT in the region rll > 0, r• = 0. Let us divide the discussion into 
three parts. 

A. rll=O, r l > 0  

Power counting in a given diagram shows that the most dominant 
contribution to ultraviolet divergences comes from regions of integration in 
which q~ is of order q• Relevancy arguments then enable us to drop the 
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terms 0 air2,  q ), ~b(V~_)2cP, and OV~_O in the action. By choosing the scales 
of r and 0 appropriately, we now have 

A[q), (o3 = f ddx dt 20{ [2 -l~b - rllt?~ - r• + 0~] q9 

+ t ? ~ - -  �89 OH~02 } (3.1) 

Power counting which treats qll and q• as having distinct dimensions 
shows that the E-field is relevant with dc = 4.5, and that all other nonlinear 
couplings are irrelevant with smaller upper critical dimensions. Here only 
F ~ ,  Fo,~, and Fo~o are primitively divergent. The divergences are absor- 
bed multiplicatively in redefinitions of the fields and the parameters: 

q)o = Z~/2 r 

~Oo = Z~/2 (o (3.2) 

20 = Z;)~ 

YOi ~ Z • 1 7 7  

t71/2 r 1/4 We find that Eo ~ q(] d)/2ql~ 5 / 2  q~-2a)/4ro5/8 because qll scales as ~• -o• 
which suggests that we define dimensionless parameters eo and e as 

eo = r ~  A "/2E o 

= N e e  (3.3) 

where the subscript zero denotes bare quantities, x is an arbitrary trans- 
verse momentum scale, A is the q i  cutoff, and e = 4 . 5 -  d. To order one- 
loop we find (see Appendix I for the evaluations of diagrams involved) 

Z• = 1 - 5,, ~x~2~ 2 e 2 In A + O(e4 ) 
Z - -  

K 

Z~ = 1 - 3.x/992 e 2 In A 
- -  + O(e 4) 
/s 

Z~ = Z~- 1 

Z e = Z ;  1/2Z5~8 (3.4) 

23V/~ 2 = l + ~ e  l n A + o ( e  4) 
K 

Z ) =  1 
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All the above relations between the Z's are valid to all orders as a con- 
sequence of the absence of logarithmic divergences in F ~ o ,  and those 
proportional to co and k~ in F ~  (see Appendix III). The complete can- 
cellation of divergent diagrams of F ~  is an important property of the 
interaction vertex 2E~o 2 011 @, which remains true in all regions considered 
in this section. 

To study the theory away from T~, we must consider insertions of 
2rlt@O~0 in F~o. This leads to one more renormalization constant 

F - -  

Zo~o = 1 + ~ e 2 In 
A 
- - +  O ( e  4) (3.5) 
tr 

with (@q~)o=Z~(~cp), where (~q)) denotes the renormalized composite 
operator. 

B. rll>O, r . = O  

Here the dominant contribution to ultraviolet divergences comes from 
the region in which qll is of order q~. We can drop ~O~VZq), ~bO~0, and 
~g~q5 in the action (2.3) to get 

A[~p, (o 3 =- f dax dt ).(~{ [2-lq5 -rltO ~ - r• + (V2) z] ~o 

+ V 2 ~ - �89 0tt ~02 } (3 .6 )  

The coupling to E has dc = 5 here, and only F~o and F ~ o  are primitively 
divergent. Defining Z's as in (3.2) (except r• together with 

rol I = Zllrll 

e o = roll3/4A -~/2E o 

=~-~)  Zee (3.7) 

where ~ = 5 -  d, we find to order one-loop (see Appendix I) 

Zit 1 - 3 

i 

A 
= e 2 In - -  + O(e 4) 

D.L R; 

Z~ = Z@ i = 1 

Z~=  1 

Ze = E l  ]- 3/4 

: l+29--se21nA+o(e 4) (3.8) 
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Again the relations between the Z's above are valid to all orders as a result 
of the absence of divergences in F ~ ,  in F ~ ,  and of any proportional to 
co and k 4 in F ~  (see Appendix III). There is no further UV divergence 
associated with insertions of r• ~V~ q~ in F~N. 

C. Near rll=O, r •  

In this region the full action of (2.3) is needed. To simplify the 
evaluation of integrals, one may calculate with zero coefficient of the term 
~(V~_)2q~, namely ~/o=0, because k 4 will not be generated by the pertur- 
bation expansion of F ~ .  Stability analysis then shows that qo = 0 is a 
stable fixed point. 

In this region d c = 8, and only F ~ ,  F ~ ,  and F ~  are primitively 
divergent. We define renormalization constants as 

E 0 = A~/2po3/4eo 

e~ = ~A) Zee (3.9) 

Po = ZoP 

~7 o = Z a f f  

where e = 8 -  d. To order one-loop we find 

5 A+ 
Z~=l-~-~(13w--37)e21n O(e 4) 

K 

Zp= 1 + 1  (317~5w) e 21nA+ O(e4 ) 
K 

Z~ = 1 _ 1  w_l(63_70w + 15w2 ) e2 In 
A 
- -  -k- O ( e  4) 
K 

Z e  = Z 2  3/2 Z3/4 

= 1 + 3 ( 5 w + 3 3 ) e 2 1 n A + o ( e 4 )  (3.10) 
Z -  g 

where w = alp. 
A given physical system may exhibit different critical behaviors gover- 

ned by fixed points in different regions of the parameter space, depending 
upon the trajectory of the physical system as external parameters like tem- 
perature T vary. We are interested in the critical behavior as T is lowered, 
starting in a high-temperature disordered phase. If the driving force is 
small, then it is sufficient to calculate the difference of rll and r• to the 
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lowest order in E in order to determine the trajectory of such a physical 
system. This tells us which fixed point is appropriate. Straightforward 
calculations show that the interaction vertex modifies only the parallel 
parameter as 

rtt = rolt + Cd E2 + O(E  4) (3.1 la) 

r .  =ro• (3.11b) 

where the d-dependent constant Cd > 0 for all dimensions of interest. Hence 
r• vanishes first as T is lowered. The critical behavior is then determined 
by the fixed point in the region rtl > 0, r• = 0 with dc = 5. This is consistent 
with the finding of Gawedzki and Kupiainen (5) using a supersymmetric for- 
mulation. 

Concerning the change of Tc in the presence of E, all we have shown 
above is that the effect of the fluctuations caused by E alone leaves the 
mean field critical temperature unchanged to all orders in E because r• 
vanishes at a higher temperature and it does not get renormalized. To 
obtain Tc(E), we would need to consider the interactions between the fluc- 
tuations caused by E and those arising from nonlinear coupling of strength 
g among ~o's. In a perturbation theory, such interactions are represented to 
the lowest order by two-loop diagrams of order EZg. 

4. C A L L A N - S Y M A N Z I K  E Q U A T I O N S  
A N D  CRIT ICAL E X P O N E N T S  

The Callan-Symanzik (C S) equations (9) are derived from the 
independence of renormalized vertex functions or Green's functions on the 
cutoff A. As an example, in the region rll = 0, r i  > 0, G ~  obeys 

A - ~  + fl + V - ~ . ro• Oro---] 

�9 G**(k, ~o, roll, ro• Eo, 2, A ) = 0  (4.1) 

The renormalization group functions 

Q 

(4.2) 
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are obtained by differentiating at fixed renormalized parameters. The 
zeroes e* of fl(eo) define the fixed points. By dimensional analysis 

rolr~/2\ co k• k,, 
G ~ = 2 o l r ~  A 'f ~-~2, A 'rl /4A 1/2' eO' 

0i 
(4.3) 

which enables us to rewrite the C-S equation as 

k,, <+zco G 

+ l + ~ ( i + p  r o l , < + f l - ~ e  ~ G~o~o=0 (4.4) 

whose solution gives the scaling form of G~o from which critical exponents 
are identified. 

Due to anisotropies caused by the driving force, a suitable set of 
critical exponents for all regions of the parameter space consists of rhl, r/• 
~hl (Rs), r/• (Rs), %1, v• %1, z• fi, 7 and a new exponent, denoted as @, to 
describe the possible violation of the fluctuation-dissipation theorem. Here 
(RS) stands for "real space." These exponents are defined via the scaling 
forms of G~o~. 

do) -i~, 
Go~(k, t) = j - -  e Ge~(k, co) 

21t 

=k22+~• ~• ,li),k~lt) 

= kl~2 +,lfl(k • kll(2 ,1~)/(2 '~), k~lt) (4.5) 

defines till, ~ l ,  Zll, and z• 

Gee(k , co, r ) = k i 2 + " l - z i f •  kl14[i, co) 

4• ~ r -vi (4.6) 

411 ~ r - V I I  

define v• and vii. Here r stands for the appropriate reduced temperature 
variable. The response function Z defines 7: 

z(k, co) = 2o(k~ + k~) G~o (k, ~) 

= r-~f(k•  4 i ,  kll ~11, o~) 

+ less singular term (4.7) 



576 Leung and Cardy 

and the nonvanishing of ~ reflects the b reakdown of the usual form of 
FDT,  i.e., G~,~o(k, ~o) = (2/co) Im z(k, co): 

= v• - q• + 0)  (4.8) 

Four ier  t ransforming G(k, t) to real space, we find that  the conventional ly 
defined real-space correlat ion function exponents  qll Rs) and ~/~RS~ are not  the 
same as the corresponding momentum-space  exponents.  For  simplicity, 
consider the equal-t ime correlat ion function 

G(x, t =O)= ~ (2~dkll dd- lk• e&ml+ik• 

x G(k, t = 0) 

Compar ing  this with the definitions of r/It Rs) and r/(a Rs/ 

1 
G(xll r  x•  = 0 ,  t = 0 ,  r = 0) ~- xd__2 +r/fIRS) 

H 

1 
G(xll=O,x•162 xa_2+,7~RS ) 

yields 

(4.9) 

(4.10) 

~]~RS) = 7/11_ ( d -  1 )" r/ll -- q• 
2 - - I / z  

q~RS) = q• + ~/"-  r/~ 
2--rht 

As long as q, = q• = q, we recover q~s)  = q~RS) = q. 
Other  scaling relations follow directly from 

exponents:  

(4.11) 

the definitions of 

v• 2 -  r/tl 

vtl 2 - r / •  

z• 2 - r / •  

zti 2 -  r/tl 

= vrl ( 2  - r/, 
\ 

2 - qll 0"~) 
+2 

(4.12) 

(4.13) 

(4.14) 
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Hence one can choose an independent set of exponents for this model as 
{r/ll, t/L, Z• V• ~ }. Notice that these scaling relations become the conven- 
tional ones once the anisotropy is removed. 

There are additional scaling relations specific to the fixed point in each 
region of the parameter space. This is a direct consequence of the absence 
of some of the ultraviolet divergences in the vertex functions, which leads 
to the relations among Z's in (3.4) and (3.8). Let us divide our discussions 
into two parts: 

A. r l l = 0 ,  r •  

By definitions (4.2), we obtain 

y(eo) = ~ -  eo 2 + O(e g) 

~• = ~ 1 2  e 2 + O(eo 4) 

/~(eo) = -- ~-~ e 2 + O(e 4) 

fl(eo) =-~ eo 

1 I 23"~/~ 2] =~e o - - e + ~ e o j + O ( e o  5) (4.16) 

(4.18) 

~/• i ~ y _ + y ,  

Z• ------: 2 

v• = (1 +�89 + # * ) - ~  

~p = ~;* 

The infrared stable fixed point for e = 4 . 5 -  d > 0  is thus 

213 
e*2 = 2 - - ~  e + O(e 2) (4.17) 

Critical exponents identified from the solution of C-S equations are given 
in terms of the RG functions evaluated at the fixed point: 
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These together with 7" = z + z ; •  which follows from the fl-function, give 
three more scaling relations in this region, relating ~/• ~/It, v• and 0 as 

2 e -  1 +t / •  
t/ll - -  2 

5 + 25 - 2t/• 

12 
(4.t9) 

zll - 5 + 2e - 2t/• 

0 = �89177 - 2 5  - 5) 

These are valid to all orders in e. Only two exponents are then independent 
at this fixed point, for example: 

r/• = 1 -1-38 ~ + O(e 2) 
(4.20) 

V •  22 ~5 + O(e 2) 

where 

B. rH>O, r •  

Here as shown in 3B, Z~ = Z~ = Z;. = Z ~  = 1, and the C-S equation 
is simpler: 

A ~3 ~ 7 -ff-~+ fl-~eo--(llroll ~rolEJ G~=O (4.21) 

(,,(eo) = -  A (~A In Z,,)re. (4.22) 

fl(eo) = �89 + ~-~ll(eo)) (4.23) 

At the infrared stable fixed point e* for e = 5 -  d >  0, 

~. 25 
II = -~- (4.24) 

to all orders, which is identical to the O(1-1oop) result. Since all exponents 
are expressed in terms of (l~', we get expressions to all orders in 5: 

4 
t/i I = 2 

= 2 "  

q •  

2 •  

v •  1 

4 + (i] ~ 

3 + e  

6 + e  

(4.25) 

0 = 0  
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The scaling relations (4.11)-(4.14) then yield other exponents: 

t/(Rs)_ (e - 2)(3+ e) 
II - 6 + e  

q(RS) = 1 +-~ 

12 
Zi~ -- 6 + 

8 
vii = 1 + ~  

7 = 1 (4.26) 

The calculation of the exponent fl involves the consideration of the 
dangerous irrelevant variable g which would couple to a term ~32~b3 in 
(2.2a). In Appendix IV we show that/3 = 1 for all d >  2. 

The fact that we are able to obtain results to all orders is a direct con- 
sequence of the absence of logarithmic divergences in all vertex functions 
except Fee. We have checked that to O(1-1oop) G~o(k, c0) and 
(2/co) Im z(k, o9) are not equal but that the leading singular parts are, 
which is indicated by the vanishing of the new exponent ~. 

We observe that all transverse exponents and 7 are of mean field 
values, and the following inequalities hold for all e > 0: 

71 fIRS) < /~(RS) (4.27) 

vii > v• (4.28) 

zll <z •  (4.29) 

(4.27) and (4.28) imply that the spatial correlation is elongated along the 
direction of the driving force, which is consistent with computer simulation 
results (1) in d = 2  and 3. (4.29) implies the faster temporal decay of 
longitudinal fluctuations, to be compared with anisotropic decays in low 
dimensions above To. (3'4~ 

5. S U M M A R Y  A N D  FURTHER R E M A R K S  

In this paper we have employed a field theoretic method to study the 
critical behavior of driven diffusive systems. The constant uniform driving 
force induces spatial anisotropies. To describe the properties of the systems 
we need a relatively large parameter space, including a longitudinal and a 
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transverse reduced temperature parameter. The RG flows in such 
parameter space become quite complicated. Simple lowest-order 
calculations of the shift of rll due to the anisotropy induced by E show that 
r i  vanishes first as T is lowered from above To. The critical behavior of the 
system is thus governed by an infrared stable fixed point below d =  5. 
Above d =  5, it is determined by the Gaussian fixed point. In that case, 
although the fluctuations are irrelevant, they still make the correlations 
anisotropic, leading to the exponents given by (4.25) and (4.26) with e = 0. 
This is not equivalent to mean field theory, which ignores all effect of the 
fluctuations. 

The surprising result is that at this fixed point one is able to obtain 
expressions for the exponents to all orders in the perturbation expansion, 
without evaluating a single Feynman diagram. This follows from the 
absence of all ultraviolet divergences in vertex functions except 1~o. 

To describe the anisotropic critical properties, we find it necessary to 
introduce longitudinal as well as transverse exponents, and a new exponent 

to take care of the possible breakdown of the conventional form of FDT. 
turns out to be zero at the above-mentioned fixed point, indicating that 

the most singular parts do satisfy FDT, though the complete expressions 
do not. 

Janssen and Schmittmann (4) showed by field theoretic techniques that 
such driven diffusive systems obey detailed balance symmetry (12) when they 
are above the critical point. We are, however, not able to rewrite our MSR 
action in the detailed-balance symmetric form whenever rll or r• vanish 
separately. We therefore conjecture that detailed balance symmetry is 
broken in connection with the breakdown of FDT at the critical point, 
since FDT follows from the detailed-balance symmetric form of the 
equation of motion. (16) There have also been discussions on the connection 
between supersymmetry, microscopic reversibility, and FDT associated 
with Langevin equations, (17'18) and it is very likely that DB, FDT, and 
SUSY are intimately related. This question requires further elucidation. 

The elongated correlation along the direction of the driving force 
found at the r l = 0  fixed point agrees qualitatively with computer 
simulations, though quantitative comparisons are not yet available. Precise 
measurements of critical exponents by simulations are very desirable. 

The fact that the two reduced temperature variables can vanish at dif- 
ferent temperatures may give rise to the possibility of different ordered 
phases as T is lowered further below To. However, to understand this we 
have to first study the properties of the ordered phase just below To. 

The field theoretic method used in this paper is systematic, yielding 
scaling forms of correlation functions and scaling relations between 
exponents. It should be possible to study more complicated systems with 
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different symmetries of driving forces (s) and with different conservation 
laws. (s) Apparently these properties at least partially characterize the 
universality classes (8) of critical systems maintained in nonequilibrium 
steady states. 

APPENDIX 

i. Feynman Diagrams 

Here the Feynman rules and the one-loop Feynman diagrams in the 
regions rll----0, r• > 0; rll > 0, r• = 0; and r• = 0, rll----0 are presented. 

There are two kinds of propagators. The response propagator 
o co) shown in Fig. 1. G~ co) and the correlation propagator G,p~o(k, as 

The interaction vertex corresponding to the driving force and the com- 
posite operator vertex are shown in Fig. 2. 

In the integrals presented below, the appropriate reduced temperature 
variable(s) is set to zero in the integrands (i.e., "massless theory ''(1~ and 
they are evaluated at (ktl ~ 0, k• = 0, co = 0). A factor of Qa j (2~)  J -  1 has 
been absorbed into a redefinition of E~, where Qd = surface area of a d- 
dimensional sphere. From now on the subscript zero for bare parameters is 
suppressed for brevity; all parameters are understood to be bare. 

A. rll=0, r •  

The propagators are 

1 
G~ co)= 

-- ico + 2(r �9 k~_ + k~) 

22k~ 
G~ co) = co2 + 22(rj_kZ z + k~)2 

k,oJ 
7) 

(A.1) 

4 , ( - k  = G +(k 

o (k 
= Gr162 , 

Fig. 1. The diagrammatic representations of the bare propagators of the perturbation 
theory. G ~  is the response line with arrow pointing away from ~b; G~ is the correlation line. 
There is no G,~r propagator. 
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~ k , w  / -  
(a) 

i X o E o kii 

---L-- = X ok I IN REGION A 
(b) 

Fig. 2. (a) The three-point vertex which represents the coupling of ~0 to E; (b) the two- 
point vertex which represents the composite operator 2oro,~5 0~qx 

In this region, do=4.5. There are three primitively divergent vertex 
functions. We denote [1/(2rc) d] ~~176 ~A d a - l q •  by ~A To order 
l-loop, we find after, integrating over the internal frequencies (see Fig. 3), 

q~(k 
Fo~o : Ia a = -- 2E2kii f 

A q)~ 
' r• q2 + q~l 

1 
x 

2r• q2 + q~ + (k - q)~ 

/Ar l /Z \  ~ 
= - 2kN e~ k 

X L--~- t,-~-,, ) --~-~- \ kl )3 
+ O ( A - ' )  (A.2) 

^ ql ( k - q ) l  f Foo " Ib, A 2EZk~ 
J r •  +q~l r •  2 + ( k - q ) l  

1 
x 

2r • q~ + q~l + (k - q)~l 

/ A r l l 2 \  e 
= - 2kll e~ k 

x 3 x / 2  Ar~  2 . . . .  _ . . ~  in (_~21)  _t_ . , =  1) (A.3) 
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. l'--"x 

(a) (b) 

(c) (d) 
Fig. 3. (a) The one-loop diagram of F~v, which corresponds to an integral la; (b) the one- 
loop diagram of F~,~, which corresponds to an integral Ib; (C, d) the one-loop diagrams of 
Fr i.e., F,~, with one insertion of the composite operator of Fig. 2b. The corresponding 
integrals are I c and ld. 

q~ (k q)]  
l"#o,p 1: Ic = - 2E2kll f 

A 

" r• + q~l [2r• + q~ + ( k -  q)~l] 2 

f Ar~2"~ x//-21 ( Ar~ 2"] --1) 
= --2k~e~--~H ) ~ n \ k~ ] +O(A ( a .4 )  

q~ (k q)~l q~ 
l '#oq~ l : [ d - - ~  - -  2E2kll f A 

' r• q~ + q~ [2r• q~_ + q~l + (k - q)~l] 2 

= - �89 (A.5) 

Here  we deno t e  F(o~,L as the vertex func t ion  F ~  with L inser t ions  of  c o m -  
posi te  o p e r a t o r  ~Sgo. 

B. r l l>O,  r •  

The  p r o p a g a t o r s  are  

G%(k, ~o)= 
1 

- io9 + 2(rllk~l + k~l ) 

2;~k~_ 
a%(k, ~o) = ~~ ~ + ,~(~Hk~ + k4): 

(A.6) 
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Here dc = 5. There is only one primitively divergent vertex function: 
Fe~ o. To order l-loop we find for the same diagram as Fig. 3.a: 

^ q2 ( k _  q)ll f Ia,~ 2E2kll 
J rllq ~+q4 2q~ +rNq ~+rN(k-q)~ 

= --2rllk~e~ \r~14k~12) 32 In rl]/4k~/------- 2 + O(A (m.7) 

C. rll=O, r• 

The propagators are 

6%(k, co)= 1 
- ico + 2k~(pk~ + k~) 

(A.8) 

G~ co) = co2 + 22k~l(pk~ + k~)2 

In this region dc = 8. The primitively divergent vertex functions are Fe~, 
Fee,  and Fe~o. To order l-loop we find (see Fig. 3) 

^ aq~+q~ 
Fee: Ia, c = -- 2E2ku f 

Pq~l + ql~ q~ 

(k-  q)~ 
x pq~ + q~q2 + p(k - q)~l + (k - q)21(k - q)~ 

= 2 k ~ ( w - 5 )  ~ eo 2 A 2 

_ 2k~l(155w_819)( A__~'~e 2 1 In tk,iloil2) 0 ~ k-llpll2 

_ 2 k ~ k ~ ( 1 3 w _ 3 7 ) (  A__~'~e2~_51n A 
~kllpl/Zj o kllPt/Z 

+ O(A-2)  (A.9) 

^ aq~ i +q~ a ( k - q ) ~ + q ~  f Fee" Ib, c 2E2k~ 
J Pq~ + ql~q~ p ( k -  q)~ + ( k -  q)b~q~ 

1 
x pq~ + 2 2 ( k - q ) ~ q ~  qllqi + p ( k -  q)~ + 

= - 2 k ~ p ( - 6 3  + 70w - 15w 2) eo 2 

1 A 
x ~ In kllpU----- 7 + O(A -2) (A.10) 
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These results lead to the expressions for the renormalization constants 
Z in Sec. 3. 

II. Crossover Exponent 

The crossover exponent ~0 from the E = 0  fixed point (the 
Wilson-Fisher fixed point) to the E ~ 0  fixed point is given by the ratio of 
the eigenvalue YE associated with E and the thermal eigenvalue YT, both 
calculated at the Wilson-Fisher fixed point in an e = 4 - d  expansion. 
Evaluating the integral corresponding to Fig. 4 gives YE: 

y e = 2 + ~ +  O(e 2) 

As (A.11) 

Yr= 2--~ + O(e 2) 

to the lowest order in e = 4 - d  

(P = YrY-ge = 1 + 4 + O(g2) (A. 12) 

Consequently the correlation functions etc. depend for small E on the 
variable Er -~~ This determines the shape of the phase boundary near E =  0 
in a standard way. ~ 

III. Absence of Certain Ultraviolet  Divergences 

Here we consider the absence of UV divergences in some of the vertex 
functions to all orders. We will confine our discussion to the region rll > 0, 
r• = 0 only, as a similar argument holds for other regions. 

Fig. 4. The one-loop diagram in the calculation of the crossover exponent ~0. 

822/44/3-4-20 



586 Leung and Cardy 

Consider the two-point function 

F+~o(k, to) = - ito + 2(rilk ~ + k 4) - Z+~(k, to) (A.13) 

where Z'o~o(k, to) denotes the sum of all one-particle irreducible (1PI) 
diagrams with one incoming and one outgoing leg. The three-point vertex 
of Fig. 2(a) which attaches to the outgoing leg gives a factor of kll to S+~ o. 
It can be shown that the number of internal response lines (Fig. 1) is odd 
for all the 1PI diagrams; therefore the integrals must all vanish at kli = 0 by 
the oddness of the integrands. Power counting then determines that, at 
d = 5 ,  

Z+~(k, to) ~ kll(kll In A + O(A -1)) (A.14) 

where terms of the form (to/kll) In A, (k4/klO In A, and k~_ In A inside the 
brackets must be absent by the vanishing of the integrals at kll = 0 and 
finite to and k• Consequently Z~oZ+ = 1 and Z~ = 1 to all orders as in 
(3.8). 

Now let us turn our attention to the three-point function F + ~ ,  which 
is given by the sum of all one-particle irreducible diagrams with two 
incoming legs and one outgoing leg. So F+~=kr l I (k i ,  toi), where k is the 
momentum of the external ~o attaching to the outgoing leg. By power coun- 
ting, I(ke, to~) ~ In A + O(A - 1 ) at d-- 5, with a momentum-independent 
coefficient of In A for each diagram. Such coefficients must then be the 
same for all choices of normalization point in evaluating the integrals, 
including the points where one of the incoming external momentum is zero. 
Conservation of momentum at such a vertex, together with the fact that the 
vertex is linearly dependent on momentum, leads to the cancellation of the 
coefficients of In A between diagrams with different permutations of the 
outgoing arrow at that vertex. This we assume occurs order by order in 
perturbation theory. As a consequence, Ze = Z1~3/4 as in (3.8). 

IV. Cr i t ical  Exponent  13 

The exponent fl is defined below T c where the system undergoes phase 
separation. The nonlinear coupling g 02~b 3 which would appear on the 
RHS of (2.2a) becomes important. Although, by power counting, g has a 
negative dimension above d = 3, it is a dangerous irrelevant variable which 
enters the calculation of the exponent ft. 

The dimension o f g  can be worked out of using (3.6): g o ~ k l ~ l k  ~ d~  
r l / 2 / r 3  d il '~• , so that we define dimensionless parameters Uo and u by 

r l / 2 A 3  d~, 
go = -Oll ~* ~ 0  

3-~ (A.15) u0( ) 
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Argument similar to that in Appendix III shows that the four-point vertex 
function F~r with one insertion of the g-vertex, is UV convergent. Hence 
go is not renormalized, which implies Zu = Zi~-1/2. We then find 

fl,(uo' eo)=( A - ~  uo)ren 

= uo[d-  3 + l~ll(eo)] (A.16) 

and all the nontrivial fixed point 

flu(Uo, e* ) = Uo~(d- 2) (A.17) 

to all orders in ~ = 5 -  d. Thus the eigenvalue of Uo at this fixed point is 
- ~ ( d -  2). 

Now we are ready to calculate/~ using the Callan Symanzik equation 
for the magnetization G~, taking into account the effect of go. The C-S 
equation reads 

I A s~_ ~ _ ~ fle ( e o ) o-~o + fl , ( e o , U o ) 8~o ] ~ll(eo) ro,, 8rol---- ~ + 

"G~(roll, r%, eo, Uo, A ) =  0 (A.18) 

At the nontrivial fixed point e~', we obtain after dimensional analysis 

ro. O e'x 1 . 
8-~%- ( 1 - g ) - ~ / 3 , ( e  0 , Uo)~Uo] G + = 0  ,A.19, 

with solution 

Go(r011 , ro• e*, u0, A ) =  to• 1' ~/0• w,[.. 1 e/3 Uo ) (A.20) 

where the dependence on r0~l, e~, and A are suppressed in F. As we have 
scaled away from the critical region to get to this scaling form of G~, mean 
field theory can be applied to determine the asymptotic behavior of the 
scaling function F(x) as x ~ 0. As in the equilibrium case, we expect 

F ( x )  ~ x 1/2 a s  x - ~  0 

so F(r~/3Uo) actually diverges as Uo ~ O. u o is thus a dangerous irrelevant 
variable. We then identify the exponent /~ as �89 true to all orders in e for 
d > 2 .  
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